Error estimation of a neuro-fuzzy predictor for prognostic purpose
نویسندگان
چکیده
Prognostic is recognized as a key feature as the estimation of the remaining useful life of an equipment allows avoiding inopportune maintenance spending. However, it can be difficult to implement an efficient prognostic tool since the lack of knowledge on the behavior of an equipment can impede the development of classical dependability analysis. In this context, the general purpose of the work is to define a prognostic system for which any assumption on its structure is necessary: it starts from monitoring data and goes through provisional reliability and remaining useful life by characterizing the uncertainty following from the degradation process. Developments are founded on the use of the evolving eXtended Tagaki-Sugeno system as a neurofuzzy predictor. A method to estimate the probability distribution function of the predicted degradation signal is proposed. It enables to perform a priori reliability analysis. The approach is based on a recursive calculation procedure and is thereby well adapted to online applications.
منابع مشابه
An indirect adaptive neuro-fuzzy speed control of induction motors
This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...
متن کاملHybrid Neuro-Fuzzy Systems for Software Development Effort Estimation
The major prevailing challenges for Software Projects are Software Estimations like cost estimation, effort estimation, quality estimation and risk analysis. Though there are several algorithmic cost estimation models in practice, each model has its own pros and cons for estimation. There is still a need to find a model that gives accurate estimates. This paper is an attempt to experiment diffe...
متن کاملThe CFD Provides Data for Adaptive Neuro-Fuzzy to Model the Heat Transfer in Flat and Discontinuous Fins
In the present study, Adaptive Neuro–Fuzzy Inference System (ANFIS) approach was applied for predicting the heat transfer and air flow pressure drop on flat and discontinuous fins. The heat transfer and friction characteristics were experimentally investigated in four flat and discontinuous fins with different geometric parameters including; fin length (r), fin interruption (s), fin pitch (p), ...
متن کاملPotential Assessment of ANNs and Adaptative Neuro Fuzzy Inference systems (ANFIS) for Simulating Soil Temperature at diffrent Soil Profile Depths
Objective: Soil temperature serves as a key variable in hydrological investigations to determine soil moisture content as well as hydrological balance in watersheds. The ingoing research aims to shed lights on potential of artificial neural networks (ANNs) and Neuro-Fuzzy inference system (ANFIS) to simulate soil temperature at 5-100 cm depths. To satisfy this end, climatic and...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کامل